

D2.3 – ACCEPT SYSTEM ARCHITECTURE DESCRIPTION V1

GRANT AGREEMENT NUMBER 957781

WP2 – Foundations

D2.3 – ACCEPT system architecture description v1

Responsible organization Hypertech

Contributing organization(s) CIRCE, QUE, CERTH, Witside, Mytilineos, EDBR,

MIWenergia, LaSolar, AEM

Due date of Deliverable 31/10/2021

Actual date of submission 28/10/2021

Type of deliverable Report

Dissemination level Public

Disclaimer: ACCEPT is a project co-funded by the European Commission under the Horizon 2020 - Call: H2020-SC3-
2018-2020 EC-3 Consumer engagement and demand response Programme under Grant Agreement No. 957781. The
information and views set out in this publication are those of the author(s) and do not necessarily reflect the official
opinion of the European Communities. Neither the European Union institutions and bodies nor any person acting on

their behalf may be held responsible for the use, which may be made, of the information contained therein.
© Copyright in this document remains vested with the ACCEPT Partners

Ref. Ares(2021)6643450 - 28/10/2021

D2.3 – ACCEPT SYSTEM ARCHITECTURE DESCRIPTION V1

Authors

Name Organization e-mail Role

Ismini Dimitriadou Hypertech i.dimitriadou@hypertech.gr Leading author
Dimosthenis Tsagkrasoulis Hypertech d.tsagkrasoulis@hypertech.gr Leading author

Ioannis Koskinas CERTH jkosk@iti.gr
Contributing
Author

Maria Diamantaki CERTH mardiama@iti.gr
Contributing

Author

Paschalis Gkaidatzis CERTH pgkaidat@iti.gr
Contributing
Author

Dimos Ioannidis CERTH djoannid@iti.gr
Contributing
Author

Panagiotis Andriopoulos QUE panos@que-tech.com
Contributing
Author

Panagiotis Moraitis QUE p.moraitis@que-tech.com
Contributing
Author

Stelios Genouzos Witside stelios.genouzos@witside.com
Contributing
Author

Aitor Alcrudo Sangros CIRCE aalcrudo@fcirce.es
Contributing
Author

Reviewers

Name Organization e-mail

Aitor Alcrudo Sangros CIRCE aalcrudo@fcirce.es

Daniele Farrace AEM dfarrace@aemsa.ch

Version history

Version Date Comments

0.0 23.08.2021 Table of Contents

0.1 15.09.2021 Contributions on functional specifications

0.2 23.09.2021
Updated Table of Contents, system architecture, SGAM, component
template

0.3 26.09.2021 Filled in templates

0.4 01.10.2021 Filled in templates, populated sections, 1st consolidated version

0.5 05.10.2021 Integration comments, updates

0.58 07.10.2021 Intermediate version after additional inputs from QUE, CERTH

0.6 08.10.2021
2nd consolidated version after additional inputs from CIRCE, QUE,
CERTH and Witside

0.7 15.10.2021 Integration of partner contributions and updates

0.8 18.10.2021 List of authors, content updates

0.82 21.10.2021 Version for peer review

1.0 29.10.2021 Final version ready for submission

D2.3 – ACCEPT SYSTEM ARCHITECTURE DESCRIPTION V1

Project Consortium

D2.3 – ACCEPT SYSTEM ARCHITECTURE DESCRIPTION V1

1. Table of Contents

Authors .. 2

Project Consortium .. 3

Glossary ... 5

Table of Abbreviations and Acronyms .. 6

Executive summary .. 8

1. Introduction ... 9

1.1. Scope of the Deliverable ... 9

1.2. Structure of the Deliverable .. 9

1.3. Interdependencies with Other Tasks and Deliverables ... 9

2. ACCEPT System Architecture .. 11

2.1. Methodological Framework .. 11

2.2. High-Level System Architecture .. 11

2.3. SGAM mapping ... 13
 SGAM Introduction .. 13
 Mapping System Architecture to the SGAM model .. 14

3. ACCEPT Components’ Specifications and Requirements .. 15

3.1. Building Information Management Layer – BIML ... 15

3.2. District Information Management Layer – DIML .. 17

3.3. District Asset Manager – DAM .. 18

3.4. Building Asset Manager – BAM .. 20
 On Demand Flexibility Manager – ODFM .. 20
 Consumer Digital Twin – CDT .. 22

3.5. Community-level P2P Exchange Platform ... 25

3.6. Citizen Application .. 26

3.7. Energy Community Tools – ECTs ... 30
 Horizontal Energy Community Tools – H-ECTs .. 30
 ESCo Tools .. 32
 Aggregator Tools .. 35
 Retailer Tools ... 37

3.8. ACCEPT solution emulator – ASE (CIRCE) .. 39

4. Conclusions .. 41

Annex I – Component’s Specifications and Requirements Template .. 42

D2.3 – ACCEPT SYSTEM ARCHITECTURE DESCRIPTION V1

Glossary

Application
Programming
Interface

An Application Programming Interface is a connection between computers or between
computer programs. It is a type of software interface, offering a service to other pieces of
software.

Communication
Protocol

A communication protocol is a system of rules that allows two or more entities of a
communications system to transmit information via any kind of variation of a physical
quantity. The protocol defines the rules, syntax, semantics and synchronization of
communication and possible error recovery methods.

Component
Diagram

In Unified Modelling Language, a component diagram depicts how components are wired
together to form larger components or software systems. They are used to illustrate the
structure of arbitrarily complex systems.

Deployment
Requirements

Deployment requirements describe the desired configuration of a software system.

Functional
Specification

A functional specification in software development is a textual description that specifies the
functions that a system or component must perform.

Non-functional
Specifications

Non-functional Specifications define system attributes such as security, reliability,
performance, maintainability, scalability, and usability

Payload
In computing and telecommunications, the payload is the part of transmitted data that is the
actual intended message.

Software
Architecture

Software architecture refers to the fundamental structures of a software system and the
discipline of creating such structures and systems. Each structure comprises software
elements, relations among them, and properties of both elements and relations.

Software
Component

An individual software component is a software package, a web service, a web resource, or
a Component that encapsulates a set of related functions (or data).

D2.3 – ACCEPT SYSTEM ARCHITECTURE DESCRIPTION V1

Table of Abbreviations and Acronyms

API Application Programming Interface

ATs Aggregator Tools

ASE ACCEPT Solution Emulator

BAM Building Asset Manager

BDT Building Digital Twin

BI Business Intelligence

BIML Building Information Management Layer

CADR Community Asset Portfolio Registry

CDT Consumer Digital Twin

CiDT Citizen Digital Twin

DAM District Asset Management

DHW Domestic Hot Water

DIML District Information Management Layer

DR Demand Response

D-SRI Dynamic SRI Performance Rating

EC European Commission

ECTs Energy Community Tools

EFT Energy Flexibility Transactions

ESCo Energy Service Company

ETs ESCo Tools

EU European Union

FFC Flexibility Forecast Collection

HVAC Heating, Ventilation and Air-Conditioning

H-ECTs Horizontal Energy Community Tools

IoT Internet of Things

KPI Key Performance Indicator

ODFM On-Demand Flexibility Management

P2P Peer-to-Peer

P2P-EP P2P Exchange Platform

PMCD Portfolio Monitoring and Control Dispatch

RTs Retailer Tools

SCP Smart Contract Platform

SGAM Smart Grid Architecture Model

D2.3 – ACCEPT SYSTEM ARCHITECTURE DESCRIPTION V1

SLA Service Level Agreement

SRI Smart Readiness Indicator

UC Use Case

UI User Interface

WP Work Package

WSN Wireless Sensor Network

The following naming conventions have been adopted for the ACCEPT architecture:

• The District Asset Management component has been renamed to District Asset Manager. A new component,

namely the District Information Management Layer (which is the equivalent to the BIML for district assets)

has been introduced to cover the functionalities of the District Asset Data Connector.

• The tools of the Citizen Application covering all the functionalities described in the DoW are the Building

Monitoring and Control Module, the Notification and Alerting System, the Collaboration Forum Module, the

Statistical Analysis Module and the Optimal Energy Schedule and Recommendation module.

• The Horizontal Energy Community Tools are supported by the registries and repositories described in the

DoW and their functionalities are included as specifications for the components VPP Manager, Demand

Elasticity Estimator, Energy Community Flexibility Manager and the P2P Supply Shadow Administrator.

D2.3 – ACCEPT SYSTEM ARCHITECTURE DESCRIPTION V1

Executive summary

This report presents the work carried out in Task 2.3 of ACCEPT regarding the system architecture design process

and results up to Month 10 of the project. In particular, the deliverable includes the high-level architecture model

of the complete system, with the initial point being the design as presented in the Description of Work, and further

refined and updated based on the work carried out in this period. This high-level architecture has also been mapped

to the various SGAM layers to assist the future integration and development activities.

The main bulk of the document concentrates on detailing the specifications and characteristics of the various

system's software components. A dedicated template was created and circulated to all relevant partners in order

to provide the components' functional and non-functional specifications, highlight interdependencies with other

components, and declare the input/output data requirements (Annex I – Component’s Specifications and

Requirements Template). Additionally, detailed component diagrams were created, and finally, the connection with

Deliverable 2.1 (D2.1) was performed via a mapping of components to Use Cases that required relevant

functionalities. Sequence diagrams were already created for D2.1 and are not presented here.

This is the first version of ACCEPT's system architecture. It will drive the development of the first iteration of the

system and its constituent components, up to Month 16 of the project. Following that, a pre-validation stage will

evaluate the system prototype, resulting to refinements, changes and updates that will be reflected on the

Deliverable 2.4, which will present the final version of the architecture.

D2.3 – ACCEPT SYSTEM ARCHITECTURE DESCRIPTION V1

1. Introduction

1.1. Scope of the Deliverable

The scope of the present deliverable is to present the work carried out in the context of Task 2.3 of ACCEPT project.

More precisely, it is focused on system architecture design process up to Month 10 (M10) of the project, including

the high-level architecture model of the complete system. The ACCEPT system conceptual architecture was briefly

presented in the Description of Work (DoW) and was further updated based on work carried out during this period

with the involvement of all relevant technology providers. This high-level architecture has also been mapped to the

various SGAM layers in order to assist the future integration and development activities.

The main part of the document is focused on a detailed presentation of the system’s software components. The

functional and non-functional specifications of the components, their interdependencies with other components and

the required input/output data for each of them, were provided from all relevant partners, through a dedicated

template that was created and circulated among them. In addition, detailed component diagrams were created and

linked to Deliverable 2.1 (D2.1), correlating each component to relevant Use Cases (UCs) and describing relevant

functionalities for each of them.

1.2. Structure of the Deliverable

The deliverable is structured as follows:

• Chapter 2 described the methodological process adopted, and presents the high-level system architecture

and its mapping to the SGAM model;

• Chapter 3 presents the detailed(non-)functional specifications, interdependencies, UC correlation,

implementation view and input/output requirements of the system’s constituent components.

• Chapter 4 concludes this document;

• Annex I include the component characterization template.

1.3. Interdependencies with Other Tasks and Deliverables

The deliverable reports on activities that have been performed in the context of “T2.3 System

architecture design, configuration & elaboration (M4-M18)”, with main outcome the first version of

ACCEPT’s system architecture. It accompanies and heavily depends on the work performed in T2.1 of

the project and its associated deliverable “D2.1 ACCEPT business scenarios, use cases & requirements”.

The work carried out here will drive the development of the first prototype of the software components

in WP4 and WP5, as shown in Figure 1.

D2.3 – ACCEPT SYSTEM ARCHITECTURE DESCRIPTION V1

Figure 1. ACCEPT Work Package interdependency Graph

D2.3 – ACCEPT SYSTEM ARCHITECTURE DESCRIPTION V1

2. ACCEPT System Architecture

2.1. Methodological Framework

The initial step towards defining ACCEPT’s system architecture and providing the required specifications for the
development of the necessary components has been the analysis of T2.1 results. The scope of T2.1 has been the
extraction of the end-user requirements, as well as the creation of the business and use cases of the project. With
the user requirements and Use Cases (UC) elicitation being the scope of T2.1, upon which the system functionalities
and architecture are then constructed, it is worth mentioning that within D2.1, each UC was described not only via
a textual and a Unified Markup Language (UML) UC diagram, but also through a sequence diagram detailing the
interactions between the different components. As such, the inclusion of those diagram in this deliverable was

deemed redundant. Therefore, the two documents must be seen as complementary to each other in their content
and purpose.

Upon finalisation of the UCs’ definition and submission of D2.1, the work pertaining T2.3 was initiated. Here, the
first step was the provision of a robust and concrete methodology, based on which the technical partners could
derive the necessary information for the subsequent development tasks, considering the requirements derived by
the aforementioned analysis. The steps of the adopted methodology included the followings:

1. Analysis of UCs for extraction of functional requirements and validation of responsible components/
contributing partners;

2. Introduction to necessary concepts and tools for the creation of the UML component diagrams. The online
free suite diagrams.net was adopted for the generation of the diagrams. Hypertech performed a short
tutorial call with other partners to introduce the tool;

3. Generation of the component characterization template, which incorporated all fields identified as
necessary for the accumulation of the required information; the template was created by Hypertech and

was distributed to all involved partners, along with instructions for properly filling in the required
information;

4. Creation of the high-level system architecture by Hypertech, which was distributed to all partners; along
with the characterisation templates;

5. Collection of filled in templates, consolidation, and evaluation of the content;
6. Second iteration of the components’ characterisation, in order to align interdependencies between

components and verify that all required functionalities are considered; and finally
7. Refinement of the high-level system architecture and creation of the SGAM mapping.

In the following sections, we present the results of this process, starting from the high-level architecture, and then
moving on to the individual software components. What is reported here will be used as reference for the
development of the first prototype ACCEPT system. After its evaluation, any lessons learnt will be integrated into
the second version of ACCEPT’s architecture (D2.4, due M18).

2.2. High-Level System Architecture

ACCEPT’s high-level system architecture can be seen in Figure 1. It was derived from the initial description of the
ACCEPT solution and its components in the DoW, further refined and updated to cover any new requirements and
reflect the current status of work performed within WP2. Arrows in the diagram indicate functional or data
dependencies from the source packages to the pointed packages.

D2.3 – ACCEPT SYSTEM ARCHITECTURE DESCRIPTION V1

Figure 2. ACCEPT high-level system architecture

D2.3 – ACCEPT SYSTEM ARCHITECTURE V1

The main composite components of the ACCEPT system have remained largely unchanged, both in terms of naming
(slight adjustments have been made for consistency and accuracy reasons) and in terms of general functionalities,
from their descriptions in the DoW. Below we shortly restate the main objectives of each such part of the system.
For extended information on all the components, the reader is directed to the next chapter.

• Building Information Management Layer (BIML): It is responsible for capturing live information
streams from a host of sensors, meters and actuators in the building, pre-process the data, perform
disaggregation, prepare semantically-enhanced information for the following components and facilitate
the downstream communication of control commands. One of the main roles of this component is ensuring
data security.

• District Information Management Layer (DIML): It is responsible for capturing live information

streams from available district-level assets owned by the communities taking part in the project, pre-
process data, perform disaggregation, prepare semantically-enhanced information for other ACCEPT
solution components and facilitate downstream communication of control actions.

• District Asset Management (DAM): It includes the functionalities for monitoring, control and
management of district-level assets (e.g., photovoltaic (PV) panels, Electric Vehicle (EV) charging, storage,
heat pumps) to enable their integration in the Virtual Power Plant that encapsulates all energy assets
under the direct control of the energy community (or within the portfolio managed by the market actor)
and whose flexibility can be leveraged for the business objectives of the community.

• Building Asset Manager (BAM): This composite component wraps all components related to
management and analysis of building-derived data. It includes the On-Demand Flexibility Management
(ODFM), which is responsible for consumer/building-level optimizations, the Consumer Digital Twin, which
provides mathematical models of the building and the citizens-residents’ preferences, as well as the
Dynamic SRI Performance Rating, which is responsible for quantifying and updating the Smart Readiness
Indicator (SRI).

• Community-Level P2P Exchange Platform (P2P-EP): It is a blockchain-based and smart-contract-
enabled platform to facilitate the exchange of energy or flexibility between the community members for
individual consumer or community level optimization.

• Citizen Application (C-App): They offer desirable functionalities to citizens through energy and non-
energy services (e.g., convenience, security, ambient assisted living features) based on the infrastructure
and background services necessary for the provision of demand response services from buildings in order
to enhance the value proposition of the ACCEPT.

• Energy Community Tools (ECTs): They are a collection of tools that enable the energy community to
collectively manage the assets at hand as either of three market roles: retailer, Energy Service Company
(ESCo) or aggregator – or any combination of these. These tools facilitate Virtual Power Plant management
for consolidation and optimal use of available flexibility in markets or retailer operations as well as energy
self-consumption optimization at the community level.

2.3. SGAM mapping

 SGAM Introduction

As stated in T2.3, one of the goals is to present a mapping of the system architecture on the SGAM model, so as
to promote reusability and also enable comparisons with the system architectures proposed by other BRIDGE
projects. SGAM was introduced by the Smart Grid Coordination Group “as a methodology for describing smart grid
use cases and services with an architectural approach. This methodology allows a neutral representation of the
involved technologies highlighting their interoperability supported by standards and, consequently, enabling
standards gap analysis”1. SGAM’s first level of abstraction consists of five interoperable layers:

• The business layer represents the business view on the information exchange
• The function layer describes functions and services including their relationships from an architectural

viewpoint
• The information layer describes the information that is being used and exchanged between functions,

services and components.

1 Estebsari, Abouzar & Barbierato, Luca & Bahmanyar, Alireza & Bottaccioli, Lorenzo & Macii, Enrico & Patti,
Edoardo. (2019). A SGAM-Based Test Platform to Develop a Scheme for Wide Area Measurement-Free
Monitoring of Smart Grids under High PV Penetration. Energies. 12. 1417. 10.3390/en12081417.

D2.3 – ACCEPT SYSTEM ARCHITECTURE V1

• The communication layer describes protocols and mechanisms for the interoperable exchange of
information between components

• The component layer shows the physical distribution of participating components in the smart grid
context.

It has to be stressed that SGAM offers further classification properties within each layer, effectively providing a
three-dimensional architectural model. For the stated purposes though, it was deemed sufficient to perform only
the first level mapping of ACCEPT’s system architecture.

 Mapping System Architecture to the SGAM model

Figure 3 and Figure 4 restate the ACCEPT system architecture, but this time under the perspective of the
Communication and Information layers of SGAM, respectively. Each component is placed over the relevant area of
the SGAM plane. To improve readability of the figures, sub-components of the ACCEPT solution have been removed.
Furthermore, high level information about connections between the composite components have been provided.
Details about each connection are provided in Section 3.

Figure 3. ACCEPT system architecture - SGAM Communication Layer mapping

Figure 4. ACCEPT system architecture - SGAM Information Layer mapping

These figures provide a solid basis for the ACCEPT-to-SGAM mapping process. Since this work reflects the activities
that have been accomplished for the first version of the ACCEPT system architecture, assumptions and restrictions
have been considered. Hence, refinements and extensions of the ACCEPT-to-SGAM mapping for all layers are
anticipated in the final version of the system architecture.

D2.3 – ACCEPT SYSTEM ARCHITECTURE V1

3. ACCEPT Components’ Specifications and Requirements

In this chapter we present the filled in templates of all identified components comprising the ACCEPT software
system. The original template, along with guidelines/clarifications on what exactly information should be filled in in
each field can be found in Annex I – Component’s Specifications and Requirements Template. Each section in this
chapter is named after one of the six composite components of the ACCEPT system. Within, subsections, if any,
correspond to the main constituent components respectively.

3.1. Building Information Management Layer – BIML

General Information

Component

name
Building Information Management Layer (BIML)

Component

Description

BIML is the component responsible for interfacing with the real world, by collecting metering,

sensing and monitoring data from the physical assets of the building and processing it for

further use from other components. It is a combination of a software and a hardware system.

The hardware part consists of an IoT gateway that enables bidirectional interoperable

communication between building’s sensors, meters and actuators and the rest of the ACCEPT

system components. The software stack allows for the continuous processing of the live data

streams by a smart ingestion engine.

The BIML follows a multilayer architecture, consisting of five main layers:

• The Security Layer is responsible for preserving data security and enforcing

information access control to other components.

• In the Data Ingestion Layer, data from IoT infrastructures is ingested into a queue

of messages to be processed before being permanently stored in the BIML data

repository. Data ingestions are delivered as messages through message-brokers to

ensure stability, delivery consistency, fault-tolerance transmission, asynchronous

communication between services, increasing reliability and system performance.

• In the Application Layer data stored in the BIML data repository or directly received

from the message brokers are divided into small batches and sent for processing;

applications for real-time data-processing (e.g., cleansing, normalising) are included

in this layer.

• The Data Management Layer provides a common storage cloud infrastructure,

accommodating all the building level IoT and EV data.

• The Data Modelling Integration Layer hosts the IoT and EV static and stream data

mapping to the BIML internal data models.

Interfaces

with End-

Users

None

Relevant UCs UC1, UC2, UC3, UC4, UC8, UC9, UC11, UC13

Lead

Developing

Partner

QUE

Programming

Language(s)
Java, Scala

Deployment

Requirements

Physical components require manual installation in premises. For the Wireless Sensor

Network (WSN) design and installation, audits of pilot sites are required. The IoT data

ingestion and processing will be deployed as a cloud service.

Specifications

Functional

Specifications

1. Establish connection with meters, sensors and actuators

2. Receive device status and data streams

3. Enable dispatching of control commands

4. Protect sensible and private data

D2.3 – ACCEPT SYSTEM ARCHITECTURE V1

5. Cleanse incoming stream of data

6. Perform data Normalization and/or Aggregation

7. Perform non-intrusive load monitoring

8. Store data locally

Functional

Dependencies

Function Responsible Component

Generate Control Actions for activation of flexibility Building Demand Manager

Non-

functional

Specifications

1. Scalability – integration of a large number of devices

2. Robustness and error reporting

3. Interoperability to enable communication with a variety of sensing, metering and

actuating devices.

Implementation View

Component

Diagram

Interfaces/Data Requirements

 Data From
Payload

Format

Communication

protocol

Input

IoT data2 Building IoT infrastructure JSON AMQP

Weather data External legacy system JSON RESTful

Control actions Building Asset Manager JSON AMQP

Control actions Citizen App JSON AMQP

 Data To
Payload

Format

Communication

protocol

Output

IoT data Building Asset Manager JSON RESTful

Weather data Building Asset Manager JSON RESTful

Metering IoT data P2P Exchange Platform JSON RESTful

Metering IoT data Energy Community Tools JSON RESTful

Building asset

static data3
Energy Community Tools JSON RESTful

IoT data Citizen App JSON RESTful

Control actions Building IoT infrastructure JSON RESTful

2 IoT data include metering, sensing and monitoring data from downstream (low-level) IoT infrastructure. More
specifically, metering data refer to data gathering by metering devices (such as smart clamps and smart meters),
sensing data refer to ambient condition data gathered through sensors, and monitoring data refer to data
obtained from the actuators/controllers of the IoT infrastructure.
3 Such data refer mainly to the characteristics (attributes) of building-level assets.

D2.3 – ACCEPT SYSTEM ARCHITECTURE V1

3.2. District Information Management Layer – DIML

General Information

Component

name
District Information Management Layer (DIML)

Component

Description

Similar to the BIML for building-level assets, the DIML enables bidirectional communication

with district-level DER elements, incl. generation, storage and demand district-level assets.

The DIML ‘s software consists of five main layers, identical to the layers of BIML for the

district-level assets monitoring, metering and sensing data management (see Section 3.1):

• The Security layer;

• the Data Ingestion layer;

• the Application layer;

• the Data Management layer; and

• the Data Modelling Integration layer.

Interfaces

with End-

users

Citizens (through citizen app)

Relevant UCs UC5, UC6, UC8, UC9, UC10, UC12, UC13

Lead

Developing

Partner

CIRCE

Programming

Language(s)
C++, Python

Deployment

Requirement

s

Physical component(s) that require(s) deployment at the demo site (the district-level IoT

infrastructure).

Specifications

Functional

Specification

s

1. Establish connection with meters, sensors and actuators

2. Receive device status and data streams

3. Enable dispatching of control commands

4. Protect sensible and private data

5. Cleanse incoming stream of data

6. Perform data Normalization and/or Aggregation

Functional

Dependencie

s

Function Responsible Component

Generate Control Actions for activation of flexibility

from district-level DERs
District Asset Manager (DAM)

Non-

functional

Specification

s

Secure communications

Scalability – integration of a large number of devices

Robustness and error reporting

Interoperability to enable communication with a variety of sensing, metering and actuating

devices.

Implementation View

Component

Diagram

D2.3 – ACCEPT SYSTEM ARCHITECTURE V1

Interfaces/Data Requirements

 Data From
Payload

Format

Communication

protocol

Input

Monitoring and

metering IoT data

Available district-level IoT

infrastructure
TBD -

Control actions for

district-level DERs
District Asset Manager JSON MQTT

 Data To

Communication

protocol

Output

Control actions
Available district-level IoT

infrastructure
TBD TBD

Metering and

monitoring IoT data

District Asset Manager JSON MQTT

Metering IoT data P2P Exchange Platform JSON MQTT

District assets static

data
Energy Community Tools JSON MQTT

EV chargers

location
Citizen App JSON MQTT

3.3. District Asset Manager – DAM

General Information

Component

name
District Asset Manager (DAM)

Component

Description

The DAM retrieves information on available district-level assets from the DIML and generates

forecasts of their operation, which are then passed to the energy community tools for

consideration under various community-wide optimisation scenarios (such as community-wide

self-consumption). The DAM is also responsible for receiving optimisation requests from the

energy community tools and translating them into control actions for the DIML.

The DAM comprises three main sub-components, namely the Generation Forecasting Module,

the Storage Forecasting Module and the Demand Forecasting Module, responsible for the

generation of forecasts for generation, storage and demand district-level assets respectively.

Interfaces

with End-

users

None

Relevant UCs UC5, UC8, UC9, UC10, UC12, UC13

D2.3 – ACCEPT SYSTEM ARCHITECTURE V1

Lead

Developing

Partner

CIRCE

Programming

Language(s)
Ada, Go, C++, Python

Deployment

Requirements
Deployment in the cloud. The installation of the DIML in the relevant pilot sites.

Specifications

Functional

Specifications

1. Forecast district-level generation

2. Forecast district-level demand (demand from district-level loads/assets, such as

district-level heat pumps)

3. Forecast district-level storage capacity and usage based on information on load and

generation, as well as dynamic pricing

4. Create demand flexibility forecasts (upwards/downwards) for storage and demand

assets

5. Generate control actions for district-level assets

6. Retrieve weather data

Functional

Dependencies

Function Responsible Component

Monitor district-level devices District Information Management

Layer

Apply control timeseries District Information Management

Layer

Optimize community self-consumption Energy Community Tools

Apply portfolio DR request Energy Community Tools

Non-

functional

Specifications

Secure communications

Implementation View

Component

Diagram

Interfaces/Data Requirements

 Data From
Payload

Format

Communication

protocol

Input

Metering and
monitoring IoT data

District Information

Management Layer
JSON MQTT

Optimisation requests Energy Community Tools JSON RESTful

Weather data External legacy system JSON RESTful

 Data To
Payload

Format

Communication

protocol

Output Control actions
District Information

Management Layer
JSON MQTT

D2.3 – ACCEPT SYSTEM ARCHITECTURE V1

Optimisation results Energy Community Tools JSON RESTful

3.4. Building Asset Manager – BAM

The Building Asset Manager (BAM) wraps the various components that are deployed at building level, in particular
the On Demand Flexibility Manager (ODFM) and the Consumer Digital Twin (CDT). As such, it suffices to
characterize its constituent parts.

 On Demand Flexibility Manager – ODFM

General Information

Component

name
On Demand Flexibility Manager (ODFM)

Component

Description

The ODFM constitutes the optimisation and control dispatch engine within the Building Asset
Manager and comprises the Flexibility Forecasting Module, the Self-consumption Forecasting
Module and the Control Management and Dispatch Module. In summary, the component will
provide the following functionalities:
• Self-consumption scenarios optimisation, aiming to schedule the use of resources in such

a way that as much self-generated energy is consumed during the day;

• Energy/cost explicit Demand Response (DR) scenarios optimisation, where the baseline

and alternative possible timeseries of electricity consumption (which are then bundled as

offered flexibility) are calculated by solving optimization problems with different objective

functions and comfort constraints’ formulations;

• Control dispatch, for breaking down a DR request and computing the necessary control

actions for the building assets.

A local repository within the ODFM will be collecting and storing the data and control demands
from the BIML, which will then be utilised for performing optimisations.

Interfaces

with End-

users

None

Relevant UCs UC2, UC3, UC7, UC8, UC10, UC11, UC13

Lead

Developing

Partner

Hypertech

Programming

Language(s)
Python, Java

Deployment

Requirement

s

Deployed as a cloud service. Requires installation of the BIML at the relevant pilot sites and

adequate historical IoT data for the Consumer Digital Twin (CDT) models training.

Specifications

Functional

Specification

s

1. Build baseline optimisation system

2. Build extended comfort optimisation

3. Forecast environmental conditions

4. Minimize energy bought from the grid

5. Minimize cost of purchased energy from the grid

6. Maximize consumption of self-generated energy

7. Compile Flexibility timeseries

8. Translate devices' consumption timeseries to control timeseries

Functional

Dependencie

s

Function Responsible Component

Model building residents' occupancy Consumer Digital Twin

Model building residents' comfort Consumer Digital Twin

D2.3 – ACCEPT SYSTEM ARCHITECTURE V1

Model building thermal spaces Consumer Digital Twin

Model building Heating, Ventilation and Air-

Conditioning (HVAC) systems
Consumer Digital Twin

Model building Domestic Hot Water (DHW) systems Consumer Digital Twin

Model building generation (renewables), EVs and

Stationary Battery systems
Consumer Digital Twin

Retrieve raw data Building Information Management

Layer

Monitor devices Building Information Management

Layer

Apply control timeseries Building Information Management

Layer

Optimize community self-consumption Energy Community Tools

Apply portfolio DR request Energy Community Tools

Non-

functional

Specification

s

1. Raw data and control commands securely transferred to/from BIML and stored

2. One ODFM active for each pilot building

3. Self-consumption optimization and/or Flexibility forecasting provided either on

demand or on a scheduled basis

Implementation View

Component

Diagram

Interfaces/Data Requirements

 Data From

Payloa

d

Format

Communication

protocol

Input

Profiling data4 Consumer Digital Twin JSON RESTful

Fitted building

thermal model
Consumer Digital Twin JSON RESTful

4 Profiling data include occupancy profiles, comfort profiles, citizen lifestyle and activity patterns, and EV
profiles (e.g., mobility habits, such as driving and charging patterns).

D2.3 – ACCEPT SYSTEM ARCHITECTURE V1

Fitted DER models5 Consumer Digital Twin JSON RESTful

Optimisation

requests
Energy Community Tools JSON RESTful

IoT data
Building Information

Management Layer
JSON RESTful

Weather data
Building Information

Management Layer
JSON RESTful

Optimisation

requests
Citizen Application JSON RESTful

Retail price forecast Energy Community Tools JSON RESTful

 Data To

Payloa

d

Format

Communication

protocol

Output

Profiling data Energy Community Tools JSON RESTful or AMQP

Optimisation results Energy Community Tools JSON RESTful or AMQP

Profiling data Citizen App JSON RESTful or AMQP

Optimisation results Citizen App JSON RESTful or AMQP

Control actions
Building Information

Management Layer
JSON RESTful or AMQP

 Consumer Digital Twin – CDT

General Information

Component

name
Consumer Digital Twin (CDT)

Component

Description

The Consumer Digital Twin (CDT) component is responsible for exposing the main modelling
functionalities to the rest of the BAM components. It consists of three main subcomponents,
namely the Citizen Digital Twin (CiDT), the Building Digital Twin (BDT) and the Dynamic Smart
Readiness Indicator (D-SRI).

The CiDT has as its main objective to mathematically capture the behavioural profiles of the

building residents and provide an energy-related characterization of their habits. In essence,

the component will perform the following:

• Learn and forecast the occupancy patterns of the residents,

• Identify the thermal comfort preferences of the end-users,

• Estimate the demand patterns for usage of Domestic Hot Water (DHW), as well as

for EV charging, if any is present,

• Capture the price elasticity of demand for each household when variable tariff

schemes are applied.

The BDT sits alongside the CiDT in order to provide the thermal modelling of the building

envelope (thermal resistance and capacitance), as well as the characterization of any energy

resources that are located within the building, both in terms of consuming loads (HVAC) as

well as energy storage and generation systems. The models integrated in this system will

be utilized for flexibility forecasting as well as translating DR requests to control dispatches.

The D-SRI component is the third sub-component of CDT. Its purpose is to calculate in a

dynamic fashion (time and resident dependent) an SRI-based Smart Readiness Indicator. To

achieve this, the component will take advantage of the modelling capabilities of the other

5 DER models may include HVAC, DHW, EV, storage and PV models (depending on building-level device
availability at pilot sites).

D2.3 – ACCEPT SYSTEM ARCHITECTURE V1

BAM components in order to periodically update appropriately selected/relevant metrics

based on the streams of data at hand.

Interfaces

with End-

users

None

Relevant UCs UC2, UC3, UC4, UC6, UC8, UC10, UC13

Lead

Developing

Partner

Hypertech

Programming

Language(s)
Python, Java

Deployment

Requirement

s

Deployed as a cloud service

Specifications

Functional

Specification

s

CiDT:

1. Model building residents' occupancy

2. Model building residents' comfort

3. Model building residents' demand patterns

4. Fit occupancy model

5. Fit comfort model

6. Retrieve environmental conditions and retail prices

7. Model user EV usage patterns

8. Fit elasticity regression model

9. Estimate consumer elasticity

BDT:

1. Model building thermal spaces

2. Model building HVAC systems

3. Model building DHW systems

4. Model building generation (renewables) and Stationary Battery systems

5. Fit thermal space model

6. Fit HVAC model

7. Fit DHW model

8. Fit EV model

9. Fit generation system model

10. Retrieve environmental conditions

D-SRI:

1. Calculate static SRI performance

2. Calculate dynamic building SRI performance

3. Send SRI score to Citizen App / UI

Functional

Dependencie

s

Function Responsible Component

Retrieve raw data Building Information

Management Layer

Retrieve citizen profiles Consumer Digital Twin

Retrieve metering/sensing data Building Information

Management Layer

Visualize results Citizen App

Non-

functional

Specification

s

1. Secure handling of personal data

2. Automated periodic updating of models

3. One instance deployed per pilot building

4. Automated scheduling for periodic updates of the SRI metrics

D2.3 – ACCEPT SYSTEM ARCHITECTURE V1

5. Uninterrupted communication with other components of the CDT and the BIML for

model and data retrieval.

6. One instance deployed per pilot building

Implementation View

Component

Diagram

Interfaces/Data Requirements

 Data From

Payloa

d

Format

Communication

protocol

Input

IoT data
Building Information

Management Layer
JSON RESTful

Weather data
Building Information

Management Layer
JSON RESTful

Pricing data Energy Community Tools JSON RESTful

Optimisation requests Energy Community Tools JSON RESTful

Optimisation requests Citizen App JSON RESTful

 Data To

Payloa

d

Format

Communication

protocol

Output

Profiling data
On Demand Flexibility

Manager
JSON RESTful or AMQP

Fitted building thermal

model

On Demand Flexibility

Manager
JSON RESTful or AMQP

Fitted DER models
On Demand Flexibility

Manager
JSON RESTful or AMQP

Profiling data Energy Community Tools JSON RESTful or AMQP

Optimisation results Energy Community Tools JSON RESTful or AMQP

Control actions
Building Information

Management Layer
JSON RESTful or AMQP

Profiling data Citizen App JSON RESTful or AMQP

Optimisation results Citizen App JSON RESTful or AMQP

D2.3 – ACCEPT SYSTEM ARCHITECTURE V1

3.5. Community-level P2P Exchange Platform

General Information

Component

name
Community-level P2P exchange platform (P2P-EP)

Component

Description

The Community-level P2P exchange platform (P2P-EP) comprises two main components,
the Energy/Flexibility Transactions (EFT) component and the Smart Contract Platform (SCP).

The EFT is a blockchain based and smart contract enabled platform that primarily will

facilitate the exchange of energy and flexibility among community members in a trustworthy
and transparent manner. On a second level the Platform will enable the execution of Smart
Contracts to allow the delivery of energy and non-energy services to the community
members.

The SCP is a tool with a local database that allows:

• the creation of Smart Contracts based on predefined Service Level Agreements;

• the Instantiation of Smart Contracts; and

• the monitoring of Service Level Agreements related KPIs.

Interfaces with

End-Users
None

Relevant UCs UC7

Lead

Developing

Partner

QUE

Programming

Language(s)
Go (with Java Plugins), RESTFul, Java, Rust

Deployment

Requirements

Linux based operational environment with min 1.5GHz, 64-bit quad-core processor, 2GB

SDRAM memory and broad connectivity.

Specifications

Functional

Specifications

EFT:

1. Store Transaction Data

2. Check Balance of the user

3. Receive Smart Contract Results

4. Anonymize user

5. Receive Market related inputs

SCP:

1. Provide predefined SLAs and KPI description

2. Provide SLAs to authorized Service Providers

3. Create SLA – user bundles

4. Save Complete SLAs

5. Monitor SLA related KPIs

6. Instantiate Smart Contracts

7. Update Smart Contracts

Functional

Dependencies

Function
Responsible

Component

Receive Market Inputs Energy Community Tools

Receive Energy Production/Consumption data Building Information

Management Layer

Receive SLA – user bundles Energy Community Tools

Update smart contracts Building Asset Manager

Non-functional

Specifications

1. Scalability

2. Stability

D2.3 – ACCEPT SYSTEM ARCHITECTURE V1

3. Security

Implementation View

Component

Diagram

Interfaces/Data Requirements

 Data From
Payload

Format

Communication

protocol

Input

Metering IoT data

District

Information

Management

Layer

JSON MQTT

Metering IoT data

Building

Information

Management

Layer

JSON RESTful

Pricing data
Energy

Community Tools
JSON RESTful

Optimisation results
Energy

Community Tools
JSON RESTful

 Data To
Payload

Format

Communication

protocol

Output

Token Balance Citizen App JSON RESTful

Token Balance
Energy

Community Tools
 JSON RESTful

SLAs
Energy

Community Tools
 JSON RESTful

3.6. Citizen Application

The Citizen Application (C-App) includes both analytical and interfacing functionalities directed towards the building
end-users. The C-App and its constituent modules are detailed below.

General Information

Component

name
Citizen Application (C-App)

Component

Description

C-App is a mobile app composed of four main added-value modules that aim to facilitate
citizens engagement and cover energy, smart living, wellbeing, smart living, collaboration,

D2.3 – ACCEPT SYSTEM ARCHITECTURE V1

mobility, to name but a few, domains, as they are briefly described below:
1. The Building Monitoring and Control module is responsible for processing all

necessary information regarding the building facility and the citizen profiling. It is a
module that provides a building smart-living experience to the citizen allowing
him/her to monitor and control different building assets remotely.

2. The Notification and Alerting system aims to populate and send notifications to the
end-users about the operational status of the building, the EV and the energy
community, detected anomalies/faults and other topics of interest.

3. The Collaboration Forum module provides a collaboration platform with several
engagement tools and services.

4. Visual Analytics module is in charge of processing building IoT data and applying
analytical reasoning techniques to enable (a) fast interpretation of past and present

situations, (b) identification possible alternative futures and their warning and (c)
decision making support. Anomaly detection mechanisms on energy consumption,
cost will highlight any outlier cases and provide insight on how to avoid them in the
future.

5. The Optimal Energy Schedule and Recommendation module aims to provide
optimal recommendations to the end user regarding their energy consumption,
energy efficiency, energy cost, EV charging and DR participation.

Interfaces with

End-Users
Yes / Consumer - Citizen

Relevant UCs UC1, UC2, UC3, UC6, UC7, UC8, UC9, UC11, UC14

Lead

Developing

Partner

CERTH

Programming

Language(s)
Python, Angular 9

Deployment

Requirements

The application will be deployed on a mobile device; the backend modules will run on an

ubuntu server.

Specifications

Functional

Specifications

Building Monitoring and Control module:
1. Display IoT data (sensing, metering, and monitoring)

2. Display EV charging/discharging data

3. Display user Profiling data (e.g., Comfort bounds, Occupancy, EV
charging/discharging)

4. Enable manual editing of user preferences (e.g., Desired Comfort bounds, desired
SoC bounds)

5. Enable the building’s systems remote control through the app

Notification and Alerting system:

1. Notify end user about the approximate energy costs

2. Notify end user about optimal energy recommendations

3. Notify end user about detected anomalies

4. Notify end user about DR events/requests

5. Notify end user about relevant p2p transactions

6. Notify end user about energy community news/updates

7. Notify end user about security alerts

8. Notify end user about estimated time of charging completion

Visual Analytics module:

1. Apply analytical reasoning techniques
2. Translate data into a visible form that highlights important features

3. Display visual analytics data

4. Display billing data

Collaboration Forum module:

1. Allow the user to participate in individual topics of a collaboration forum

2. Provide a Gamification platform that creates daily/weekly objectives for the user
to ensure his/her engagement to the collaboration forum

3. Incorporate a Reward system with ACCEPT points that could be translated to
energy sales

D2.3 – ACCEPT SYSTEM ARCHITECTURE V1

4. Display a ranking table with the top engaged users according to the ACCEPT
points

5. Display a Q&A table that contains general information about the functionality of
this platform

6. Display and monitor P2P transactions of the end user

Optimal Energy Schedule and Recommendation module:

1. Engage the user for potential savings

2. Provide insights about the energy cost per appliance / activity

3. Provide forecasted estimated costs and recommendations

4. Display recommendations of optimized solutions for energy efficiency considering
their comfort level.

5. Display recommendations of optimal daily/weekly EV charging schedules.

6. Display profit/penalties metrics in case that the user follows/deviates from the
recommended schedule.

Functional

Dependencies

Function Responsible Component

Retrieve building near real-time and historical IoT

and EVs data and send control actions

Building Information Management

Layer

Send optimisation requests and retrieve the results Building Asset Manager (ODFM)

Retrieve User Profiling data (e.g., Comfort bounds,

Occupancy, EV charging/discharging)
Building Asset Manager (CiDT)

Retrieve Knowledge, Pricing and DR related data Energy Community Tools (Retailer,

Aggregator)

Retrieve Token balance data P2P Exchange Platform

Retrieve EV chargers’ location data District Information Management

Layer

Non-functional

Specifications

1. Availability-Component is continuous running

2. Performance-Service simultaneous users with a good response time

3. Scalability-Possibility to expand the system and avoid adversely affected

performance

4. Use-ability-Ease of use and user-friendly interface

5. Responsiveness-Respond to a user’s input or an external event

6. Security-Respect and protection of user’s privacy and security

7. Extensibility- Possibility for new functional requirements addition

Implementation View

D2.3 – ACCEPT SYSTEM ARCHITECTURE V1

Component

Diagram

Interfaces/Data Requirements

Input

Data From
Payload

Format

Communication

protocol

IoT data BIML JSON RESTful

Profiling data BAM JSON RESTful

Optimisation results BAM JSON RESTful

DR alerts ECTs JSON RESTful

Pricing data ECTs JSON RESTful

Knowledge data ECTs JSON RESTful

Token balance P2P-EP JSON RESTful

EV chargers’ location

(static data)
DIML JSON MQTT

Output

Data To
Payload

Format

Communication

protocol

Control actions BIML JSON AMQP

Optimisation requests BAM JSON RESTful

D2.3 – ACCEPT SYSTEM ARCHITECTURE V1

3.7. Energy Community Tools – ECTs

The Energy Community Tools (ECTs) include all components that interface or support the business cases of the
market actors and/or the energy communities.

The ECTs, apart from all the back-end components presented herein, will also be supported by User Interfaces
(UIs) and Business Intelligence (BI) Suite, which will provide valuable, data-driven insights on the ACCEPT solution
performance in through optimal visualisation aids for the community. In summary, the aforementioned suite will
support the following:

• Provide visualisations, graphs and KPIs, supporting the user (in this case, the energy community as an

aggregator, retailer, ESCo) in data-driven decision making

• Support the user in extracting insights and discovering crucial points in speeding up the process and

simultaneously improving the performance.

• Support the end users in initiating some of the UCs by exploiting their inputs. For example, the end users

can request the optimization of day-ahead retail energy prices etc.

The main components comprising the Energy Community toolset are described below.

 Horizontal Energy Community Tools – H-ECTs

General Information

Component name Horizontal Energy Community Tools (H-ECTs)

Component

Description

The H-ECTs support all market role (i.e., aggregator, retailer and ESCo) specific

functionalities of the Energy Community Tools. The H-ECTs consist of four main

components:

• The Virtual Power Plant (VPP) Manager is responsible for deciding on the

optimal clustering of available assets of the community-level portfolio (VPP

formulation and configuration) based on dynamic information received from

the aggregator, retailer or ESCo tools. This dynamic information will refer to

the optimisation context and scenarios required by each actor at a given time

to cover community and/or grid needs.

• The Demand Elasticity Estimator is responsible for estimating the optimal

pricing signal at which prosumers within a community are most likely to

respond to and provide flexibility services.

• The Energy Community Flexibility Manager is the core community-level

optimisation engine responsible for receiving optimisation requests from the

aggregator, retailer and ESCo tools and translating them into certain flexibility

/DR requests for specific prosumers and assets within the appropriately

configured VPP. The responsibility of the specific component includes also the

dispatch of such flexibility/DR requests to all relevant prosumers and assets

within the community portfolio.

• The P2P Supply Shadow Administrator is a tool that will stimulate community

optimization through price signals. Taking into account implicit flexibility

requests, electricity demand and supply within the community and the overall

self-optimization strategy of the community, it will provide price signals to the

prosumers in order to steer consumption.

The H-ECTs are also responsible for collecting all asset (both at building- and district-

level) information (static and dynamic), as well as all flexibility forecasts generated by

other ACCEPT solution components.

Interfaces with

End-users
None

Relevant UCs UC4, UC5, UC6, UC7, UC8, UC9, UC10, UC11, UC12, UC13

D2.3 – ACCEPT SYSTEM ARCHITECTURE V1

Lead Developing

Partner
Hypertech

Programming

Language(s)
Python, Java

Deployment

Requirements
Deployed as a cloud service

Specifications

Functional

Specifications

Virtual Power Plant Manager:

1. Receive clustering criteria from the vertical energy community tools (i.e., the

aggregator, retailer and ESCo tools)

2. Create optimal VPPs for specific optimisation scenario based on the relevant

VPP formulation criteria

3. Send information on created optimal VPP to the Energy Community Flexibility

Manager

Demand Elasticity Estimator:

1. Create consumers' elasticity regression models

2. Estimate portfolio elasticity

3. Forecast ideal demand curve at portfolio level and at prosumer level

4. Calculate optimal energy retail prices

5. Retrieve consumer's tariff data

6. Retrieve wholesale market prices

7. Monitor performance

Energy Community Flexibility Manager:

1. Receive flexibility/DR request

2. Retrieve optimal VPP information

3. Retrieve building-level optimisation results

4. Retrieve district-level optimisation results

5. Decide on DR requests per available prosumer and/or district-level asset

6. Dispatch DR requests

P2P Supply Shadow Administrator:

1. Deliver energy/ flexibility pricing data

Generic functionalities:

1. Receive static building-level and district-level assets data

2. Receive dynamic building-level and district-level assets data

3. Receive building-level and district-level optimisation results (e.g., flexibility

forecasts)

Functional

Dependencies

Function Responsible Component

Collect building-level asset specifications Building Information

Management Layer

Collect district-level asset specifications District Information Management

Layer

Provision of Total Energy Surplus/Deficit Energy Community Tools

Collect wholesale energy price ACCEPT Solution Emulator

Collect DR requests ACCEPT Solution Emulator

Collection of prosumer flexibility forecasts Building Information

Management Layer

Collection of district asset flexibility forecasts District Information Management

Layer

Non-functional

Specifications

1. Requires a scalable relational database

2. Suitable views for filtering assets

3. Handling of concurrent requests/ responses

D2.3 – ACCEPT SYSTEM ARCHITECTURE V1

4. Stability

5. Security

Implementation View

Component

Diagram

Interfaces/Data Requirements

 Data From
Payload

Format

Communication

protocol

Input

DR requests
ACCEPT Solution

Emulator
JSON

AMQT, MQTT or

RESTful

Energy prices
ACCEPT Solution

Emulator
JSON

AMQT, MQTT or

RESTful

Metering IoT data
Building Information

Management Layer
JSON RESTful

Building assets

static data

Building Information

Management Layer
JSON RESTful

Profiling data Building Asset Manager JSON RESTful or AMQP

Optimisation

requests
Building Asset Manager JSON RESTful or AMQP

Optimisation results District Asset Manager JSON RESTful

SLAs P2P Exchange Platform JSON RESTful

Token balance P2P Exchange Platform JSON RESTful

District assets static

data

District Information

Management Layer
JSON MQTT

 Data To
Payload

Format

Communication

protocol

Output

Optimisation

requests
Building Asset Manager JSON RESTful or AMQP

Optimisation

requests
District Asset Manager JSON RESTful

Pricing data P2P Exchange Platform JSON RESTful

 ESCo Tools

General Information

Component

name
ESCo Tools (ETs)

Component

Description

The ETs suite consists of all functional level components addressing the needs of an ESCo (or

an Energy Community acting as one). In summary, the tools will implement the following:

D2.3 – ACCEPT SYSTEM ARCHITECTURE V1

• A portfolio-wide self-consumption (or self-balancing) optimization framework,

• communication with P2P supply chain to offer flexibility to third parties,

• continuous monitoring of the Energy Performance Contracting KPIs for all portfolio

assets.

• Amenity-as-a-Service offerings based on Service Level Agreements (SLAs).

Interfaces

with End-

users

None

Relevant UCs UC5, UC10, UC12, UC13

Lead

Developing

Partner

Hypertech

Programming

Language(s)
Python, Java

Deployment

Requirements
Deployed as a cloud service

Specifications

Functional

Specifications

1. Receive DR request from the ACCEPT solution emulator

2. Translate DR request into optimisation scenario

3. Optimize community self-consumption

4. Optimize community self-balancing

5. Monitor building energy performance

6. Receive SLAs

7. Create compound service offerings for end customers

8. Translate optimisation scenario into clustering criteria for VPP manager

9. Translate optimisation scenario into optimisation constraints for Energy Community

Flexibility Manager

Functional

Dependencies

Function Responsible Component

Flexibility Forecast Building Asset Manager

Flexibility Forecast District Asset Manager

Retrieve building asset static data Building Information Management Layer

Retrieve district asset static data District Information Management Layer

Monitor Performance Building Asset Manager

Receive DR request ACCEPT Solution Emulator

Non-

functional

Specifications

1. Deployed as a cloud service

2. One instance per associated stakeholder

Implementation View

D2.3 – ACCEPT SYSTEM ARCHITECTURE V1

Component

Diagram

Interfaces/Data Requirements

 Data From
Payload

Format

Communication

protocol

Input

DR requests
ACCEPT Solution

Emulator
JSON AMQT, MQTT or RESTful

Energy prices
ACCEPT Solution

Emulator
JSON AMQT, MQTT or RESTful

Metering IoT data

Building

Information

Management Layer

JSON RESTful

Building assets static

data

Building

Information

Management Layer

JSON RESTful

Profiling data
Building Asset

Manager
JSON RESTful or AMQP

Optimisation

requests

Building Asset

Manager
JSON RESTful or AMQP

Optimisation results
District Asset

Manager
JSON RESTful

SLAs
P2P Exchange

Platform
JSON RESTful

Token balance
P2P Exchange

Platform
JSON RESTful

District assets static

data

District Information

Management Layer
JSON RESTful

 Data To
Payload

Format

Communication

protocol

Output

Optimisation

requests

Building Asset

Manager
JSON RESTful or AMQP

Optimisation

requests

District Asset

Manager
JSON RESTful

Pricing data
P2P Exchange

Platform
JSON RESTful

D2.3 – ACCEPT SYSTEM ARCHITECTURE V1

 Aggregator Tools

General Information

Component

name
Aggregator Tools (ATs)

Component

Description

The ATs suite of tools includes all the computational engines that support the

implementation of the explicit DR scenarios in the ACCEPT project, from the side of the

aggregator.

Interfaces

with End-

users

None

Relevant UCs UC6, UC7, UC8, UC10, UC13

Lead

Developing

Partner

Hypertech

Programming

Language(s)
Python, Java

Deployment

Requirements
Deployed as a cloud service

Specifications

Functional

Specifications

1. Receive DR request from the ACCEPT solution emulator

2. Translate DR request into optimisation scenario

3. Translate optimisation scenario into clustering criteria for VPP manager

4. Translate optimisation scenario into optimisation constraints for Energy Community

Flexibility Manager

5. Retrieve building flexibility timeseries

6. Accumulate flexibility

7. Disaggregate requested consumption modification to buildings, EVs, district assets

8. Disaggregate requested consumption to different buildings

Functional

Dependencies

Function Responsible Component

Forecast Flexibility Flexibility Forecast Collection

Retrieve assets Community Asset Portfolio Registry

Monitor event Portfolio Monitoring and Control Dispatch

Non-

functional

Specifications

1. Deployed as a cloud service

2. One instance per associated stakeholder

Implementation View

D2.3 – ACCEPT SYSTEM ARCHITECTURE V1

Component

Diagram

Interfaces/Data Requirements

 Data From
Payload

Format
Communication protocol

Input

DR requests
ACCEPT Solution

Emulator
JSON AMQT, MQTT or RESTful

Energy prices
ACCEPT Solution

Emulator
JSON AMQT, MQTT or RESTful

Metering IoT data

Building

Information

Management Layer

JSON RESTful

Building assets

static data

Building

Information

Management Layer

JSON RESTful

Profiling data
Building Asset

Manager
JSON RESTful or AMQP

Optimisation

requests

Building Asset

Manager
JSON RESTful or AMQP

Optimisation results
District Asset

Manager
JSON RESTful

SLAs
P2P Exchange

Platform
JSON RESTful

Token balance
P2P Exchange

Platform
JSON RESTful

District assets static

data

District Information

Management Layer
JSON RESTful

 Data To
Payload

Format
Communication protocol

Output

Optimisation

requests

Building Asset

Manager
JSON RESTful or AMQP

Optimisation

requests

District Asset

Manager
JSON RESTful

Pricing data
P2P Exchange

Platform
JSON RESTful

D2.3 – ACCEPT SYSTEM ARCHITECTURE V1

 Retailer Tools

General Information

Component

name
Retailer Tools (RTs)

Component

Description

The RTs suite supports the Energy retailer role of the community services, by providing

portfolio-wide management for dynamic pricing scenarios, as well as billing information for

end customers.

Interfaces

with End-

users

None

Relevant UCs UC4, UC9, UC11

Lead

Developing

Partner

Witside

Programming

Language(s)
Python, Java

Deployment

Requirements
Deployed as a cloud service

Specifications

Functional

Specifications

1. Receive DR request from the ACCEPT solution emulator

2. Translate DR request into optimisation scenario

3. Translate optimisation scenario into clustering criteria for VPP manager

4. Translate optimisation scenario into optimisation constraints for Energy Community

Flexibility Manager

5. Estimate portfolio elasticity

6. Forecast portfolio demand curve

7. Calculate optimal energy retail prices

8. Retrieve consumer's tariff data

9. Retrieve wholesale market prices

10. Monitor prosumer energy consumption

11. Generate billing information

Functional

Dependencies

Function Responsible Component

Estimate consumer elasticity Demand Elasticity Estimator

Energy consumption measurements for

prosumers
Building Information Management Layer

Non-

functional

Specifications

1. Deployed as a cloud service

2. One instance per associated stakeholder

Implementation View

D2.3 – ACCEPT SYSTEM ARCHITECTURE V1

Component

Diagram

Interfaces/Data Requirements

 Data From
Payload

Format

Communication

protocol

Input

DR requests
ACCEPT Solution

Emulator
JSON AMQT, MQTT or RESTful

Energy prices
ACCEPT Solution

Emulator
JSON AMQT, MQTT or RESTful

Metering IoT data
Building Information

Management Layer
JSON RESTful

Building assets static

data

Building Information

Management Layer
JSON RESTful

Profiling data
Building Asset

Manager
JSON RESTful or AMQP

Optimisation

requests

Building Asset

Manager
JSON RESTful or AMQP

Optimisation results
District Asset

Manager
JSON RESTful

SLAs
P2P Exchange

Platform
JSON RESTful

Token balance
P2P Exchange

Platform
JSON RESTful

District assets static

data

District Information

Management Layer
JSON RESTful

 Data To
Payload

Format

Communication

protocol

Output

Optimisation

requests

Building Asset

Manager
JSON RESTful or AMQP

Optimisation

requests

District Asset

Manager
JSON RESTful

Pricing data
P2P Exchange

Platform
JSON RESTful

D2.3 – ACCEPT SYSTEM ARCHITECTURE V1

3.8. ACCEPT solution emulator – ASE (CIRCE)

General Information

Component

name
ACCEPT solution emulator (ASE)

Component

Description

The ASE is the component responsible for emulating the role of external to the energy

community energy stakeholders, such as the DSO and the energy market operator. The ASE

consists of two sub-components:

• The DSO emulator, which is responsible for dynamically assessing the grid state

(through appropriate simulations/power flow analysis) and issuing demand response

/flexibility requests to the energy communities, i.e., triggering the ACCEPT digital

toolset.

• The Energy Market emulator, which is responsible for estimating/forecasting and

communicating wholesale energy prices to the respective actors within ACCEPT,

namely the energy community as an aggregator, retailer and ESCo.

Interfaces

with End-

users

Energy community

Relevant UCs UC4, UC5, UC8, UC9, UC10, UC11

Lead

Developing

Partner

CIRCE

Programming

Language(s)
Java, Python

Deployment

Requirement

s

Cloud Based. Availability of DSO historical data which can be used for simulation of grid state.

Specifications

Functional

Specification

s

1. Retrieve DSO historical data

2. Estimate electricity grid state

3. Estimate flexibility needs based on electricity grid state

4. Create compound DR request based on estimated flexibility needs for grid constraint

alleviation

5. Forecast energy wholesale prices

Functional

Dependencie

s

Function Responsible Component

Retrieve DSO historical data External legacy system

Non-

functional

Specification

s

Implementation View

Component

Diagram

Interfaces/Data Requirements

D2.3 – ACCEPT SYSTEM ARCHITECTURE V1

 Data From

Payloa

d

Format

Communication protocol

Input DSO historical data External legacy system JSON RESTful

 Data To

Payloa

d

Format

Communication protocol

Output

DR requests

Energy Community

Tools (Aggregator

Tools, Retailer Tools

and ESCo Tools)

JSON AMQT, MQTT or RESTful

Energy prices
Energy Community

Tools
JSON AMQT, MQTT or RESTful

D2.3 – ACCEPT SYSTEM ARCHITECTURE V1

4. Conclusions

In the previous pages we detailed the software architecture of ACCEPT’s first prototype system, as well as the

specifications of its components. All technical partners associated with developing part of the solution, were asked

to fill in a characterization table for each component, providing the functional and non-functional specifications,

highlighting interdependencies with other components, and declaring the input/output data requirements.

Additionally, detailed component diagrams were created, and finally, the connection with D2.1 was performed via

a mapping of components to Use Cases that required relevant functionalities. The collected material was integrated

and two rounds of updates followed, in order to consolidate and bring in line the various inputs. During this process,

it was ensured that data and functional specifications between the components were harmonised, and that

functionalities offered satisfy the end-user requirements and use cases defined in D2.1. The latter will be further

explored in the final version of the project architecture, after engaging with the pilot partners and end users for

understanding their requirements. The deliverable also contains a mapping of the high-level architecture to the

SGAM model, in order to assist to future integration and development activities.

This is the first version of ACCEPT's system architecture. It will drive the development of the first iteration of the

system and its constituent components, up to Month 16 of the project. Following that, a pre-validation stage will

evaluate the system prototype and any refinements/changes/updates will be reflected on the Deliverable 2.4, which

will present the final version of the architecture.

D2.3 – ACCEPT SYSTEM ARCHITECTURE V1

Annex I – Component’s Specifications and Requirements Template

Table 1. Component's Specifications and Requirements Template

General Information

Component name
Component name as shown in the system architecture (if modified, changes

should be propagated there)

Component

Description
Short textual description of the Component (objective, functionalities, etc.)

Interfaces with End-

users
End-users interacting with the component if any

Relevant UCs
UCs in which the component will need to be used (provide the ID of each such

UC)

Lead Developing

Partner
Partner developing the component and its sub-components

Programming

Language(s)
Which programming languages will be used for the development

Deployment

Requirements

Software and hardware requirements for deploying the solution to the pilot

sites

Specifications

Functional

Specifications

The functions that the component needs to offer (Taken out of the shared

excel sheet)

Functional

Dependencies

Function Responsible Component

Functions that should be provided by

other components in order to

implement all functionalities listed

above

Component responsible for

implementing the respective

functionality

Non-functional

Specifications

Specifications related to security, performance, reliability, data granularity,

scheduling, etc.

Implementation View

Component Diagram
UML component diagram showing the sub-components of the component and

interfaces to other components (Do not skip the second part, it is important)

Interfaces/Data Requirements

 Data From
Payload

Format

Communication

protocol

Input

Input data

required by the

component to

implement a

functionality

Component that

provides the data

Format of

exchanged

information

(e.g., JSON)

Communication

protocol (e.g.,

HTTP RESTful,

AMQP)

 Data To
Payload

Format

Communication

protocol

Output

Output data

generated by the

component as a

result of a

function

Component that

requests the data

Format of

exchanged

information

(e.g., JSON)

Communication

protocol (e.g.,

HTTP RESTful,

AMQP)

